A New Orientation in the Oxymercuration of αβ-Unsaturated Carbonyl Compounds

By A. J. BLOODWORTH* and R. J. BUNCE

(Chemistry Department, University College London, 20 Gordon Street, London WC1H OAJ)

Summary Novel β -mercuration is found in the oxymercuration of α -only substituted $\alpha\beta$ -unsaturated carbonyl compounds (CH₂:CR·CO·Y).

EXISTING literature¹ describing the oxymercuration of $\alpha\beta$ unsaturated carbonyl compounds is limited to the methoxymercuration of (β -alkyl)acrylic acids and esters or β -phenylaldehydes or ketones. Although structural evidence was not always compelling and, at the time, inevitably of a chemical nature, these reactions are reported to provide exclusively products in which the mercury becomes attached to the α -carbon:

$$\begin{aligned} \mathbf{R}^{1}\mathbf{C}\mathbf{H}:\mathbf{C}\mathbf{H}\cdot\mathbf{C}\mathbf{O}\cdot\mathbf{Y} \ + \ \mathbf{Hg}(\mathbf{O}\mathbf{Ac})_{2} \ + \ \mathbf{Me}\mathbf{O}\mathbf{H} \ \rightarrow \\ \mathbf{R}^{1}\mathbf{C}\mathbf{H}(\mathbf{O}\mathbf{Me})\mathbf{C}\mathbf{H}(\mathbf{Hg}\mathbf{O}\mathbf{Ac})\mathbf{C}\mathbf{O}\cdot\mathbf{Y} \ + \ \mathbf{H}\mathbf{O}\mathbf{Ac} \end{aligned}$$
(I)

where $R^1 = H$, alkyl, Ph; Y = OH, OR^2 , H, Ph.

By using an n.m.r. technique we have been able to confirm that α -mercurated structures (I) are obtained in both methoxy- and t-butylperoxy-² mercuration of a wide range of such compounds in which there are (a) no other substituents, (b) β -only substituents, or (c) both α and β substituents.

We report now the first oxymercurials derived from $\alpha\beta$ unsaturated carbonyl compounds in which the mercury becomes attached to the β -carbon atom. This reversed orientation has been obtained only with molecules which are alkylated solely in the α -position, namely methyl methacrylate, methyl atropate, isopropenyl methyl ketone, and methacraldehyde:

$$CH_{2}: CR^{1} \cdot CO \cdot Y + Hg(OAc)_{2} + R^{2}OH$$

$$\downarrow$$

$$\langle AcOHg)CH_{2} \cdot CR^{1}(OR^{2})CO \cdot Y + HOAc$$

$$\downarrow KBr$$

$$(II)$$

$$BrHg \cdot CH_{2} \cdot CR^{1}(OR^{2})CO \cdot Y \quad (III)$$

where $R^1 = Me$, Ph; Y = OMe, Me, H; $R^2 = Me$, OBu^t .

The reactions were carried out in dichloromethane using 2 mole % of perchloric acid as a catalyst, and the products (II) are viscous oils or low-melting crystalline solids for which correct elemental analyses have been obtained. The orientation was determined by analysis of the ¹H n.m.r. spectra of the corresponding bromomercurials (III), which are obtained from treatment with aqueous KBr.

In all these products the β -methylene protons come into resonance in the region τ 7.6 to 8.1, and generally they appear as an AB pattern by virtue of the magnetic nonequivalence which results from the asymmetry generated at the α -carbon. By comparison with oxymercurials derived from simple terminal alkenes,³ this is precisely the chemical shift which is anticipated for the structures given. However, in the alternative orientation, R²O·CH₂·CR¹(HgBr)-CO·Y (IV), the methylene protons would be expected to appear at about τ 6.2 (R² = Me) or 5.6 (R¹ = OBu^t), by analogy with model compounds. In the cases where $R^1 = Me$, confirmation of the assigned structure was obtained from measurements of the coupling between these α -methyl protons and the 16.84% of naturally-occurring ¹⁹⁹Hg nuclei. These were found to be in the range of 20 to 25 Hz, in agreement with previously measured⁴ coupling constants for Hg-C-C-CH₃ [as in structure (III)], but too small by a factor of ten^{3a,5} for the system Hg-C-CH₃ [as in structure (IV)].

A third piece of evidence relating to the orientation can be obtained by employing the borohydride reduction developed by Brown⁶ to replace mercury in the oxymercurials by hydrogen:

BrHgCH₂·CR¹(OR²)CO·Y
$$\xrightarrow{\text{NaBH}_4}$$
 CH₃·CR¹(OR²)CO·Y
(III) (V)

Thus t-butyl 1-methoxycarbonyl-1-methylethyl peroxide (V; $\mathbb{R}^1 = \mathbb{M}e$, $\mathbb{R}^2 = OBu^t$, $\mathbf{Y} = OMe$) was prepared in this way. This provides a convenient route to ethers or peroxides which have the inverse orientation to those obtainable by base-catalysed nucleophilic addition of the

weak acids:

e.g.
$$CH_2: CMe \cdot CO_2Me + H \cdot OR \xrightarrow{base}$$

RO·CH₂·CHMe·CO₂Me

One of us (R. J. B.) thanks the S.R.C. for a maintenance grant.

(Received, April 28th, 1970; Com. 635.)

¹ Reviewed in (a) J. Chatt, Chem. Rev., 1951, 48, 1; (b) L. G. Makarova and A. N. Nesmeyanov, "The Organic Compounds of Mercury," North-Holland, Amsterdam, 1967, ch. 6; (c) W. Kitching, Organometallic Chem. Rev. (A), 1968, 3, 61.
² D. H. Ballard, A. J. Bloodworth, and R. J. Bunce, Chem. Comm., 1969, 815.
³ (a) W. Kitching, A. J. Smith, and P. R. Wells, Austral. J. Chem., 1968, 21, 2395; (b) E. F. Kiefer, W. L. Waters, and D. A. Carlson, J. Amer. Chem. Soc., 1968, 90, 5127.
⁴ E. F. Kiefer and W. L. Waters, J. Amer. Chem. Soc., 1965, 87, 4401.
⁵ (a) S. Brownstein, Discuss. Faraday Soc., 1962, 34, 25; (b) M. M. Kreevoy and J. F. Schaefer, J. Organometallic Chem., 1966, 6, 589.
⁶ H. C. Brown and P. Geoghegan, J. Amer. Chem. Soc., 1967, 89, 1522.